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The linear theory for water waves impinging obliquely on a vertically sided porous 
structure is examined. For normal wave incidence, the reflection and transmission 
from a porous breakwater has been studied many times using eigenfunction 
expansions in the water region in front of the structure, within the porous medium, 
and behind the structure in the down-wave water region. For oblique wave incidence, 
the reflection and transmission coefficients are significantly altered and they are 
calculated here. 

Using a plane-wave assumption, which involves neglecting the evanescent 
eigenmodes that exist near the structure boundaries (to satisfy matching conditions), 
the problem can be reduced from a matrix problem to one which is analytic. The 
plane-wave approximation provides an adequate solution for the case where the 
damping within the structure is not too great. 

An important parameter in this problem is r2 = u2h(s- i f ) /g ,  where w is the wave 
angular frequency, h the constant water depth, g the acceleration due to gravity, and 
s and f are parameters describing the porous medium. As the friction in the porous 
medium, f ,  becomes non-zero, the eigenfunctions differ from those in the fluid 
regions, largely owing to the change in the modal wavenumbers, which depend on r,. 

For an infinite number of values of I',, there are no eigenfunction expansions in 
the porous medium, owing to the coalescence of two of the wavenumbers. These cases 
are shown to result in a non-separable mathematical problem and the appropriate 
wave modes are determined. As the two wavenumbers approach the critical value of 
r2, it is shown that the wave modes can swap their identity. 

1. Introduction 
Porous structures, such as rubble-mound breakwaters, are used to protect 

harbours, inlets, and beaches from wave action. Further, they are often used as 
absorbers in laboratories to remove unwanted waves during experiments. The 
functional efficiency of these structures is evaluated for vertically sided structures by 
calculating the reflection and transmission of waves. The reflection and transmission 
coefficients depend on the characteristics of the waves (wave height, H ,  wave period, 
T, and angle of incidence, 8) and of the structure (such as its geometry and its 
composition). 
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Theoretical solutions for the reflection and transmission coefficients for porous 
structures have been derived previously by several authors, using eigenfunction 
expansions in the fluid and in the porous medium. The existing solutions are valid for 
structures with rectangular cross-sections under normally incident linear waves. 
Dissipation of energy inside the structures is taken into account through a linearized 
friction term, involving a friction coefficient, f, which is evaluated by fulfilling 
Lorentz’s condition of equivalent work (Sollitt & Cross 1972; 0. Madsen 1974; 
0. Madsen & White 1976; P. Madsen 1983; and others). These models have been 
reasonably verified in laboratory experiments. 

Trapezoidal breakwaters have been analysed by considering an equivalent 
breakwater of rectangular cross-section (Sollitt & Cross 1972) or through boundary- 
element models (Sulisz 1985). An additional dissipation of energy may be included in 
order to evaluate wave breaking on the slope (Sollitt & Cross 1972; 0. Madsen & 
White 1976). Further, several laboratory studies have been conducted to investigate 
the reflected and transmitted waves for specific types of permeable structures under 
normally incident waves (Iwasaki & Numata 1970; Dattatri, Raman & Shankar 
1978). 

In this paper the theory of wave transmission and reflection by an infinitely long, 
homogeneous porous structure is extended to the case of linear waves a t  oblique 
incidence, providing the basis for treating an incident directional spectrum. Further, 
a plane-wave approximation, which neglects the evanescent wave modes, is given for 
several geometries. It will be shown that for almost all the practical cases, the plane- 
wave approximation, which has the long-wave solution as a special case, is sufficient 
to describe the wave behaviour, thus providing a far simpler solution technique. This 
plane-wave analysis has analogues in other fields of physics, for example, the 
transmission and reflection of plane acoustic waves by a porous medium (e.g. Morse 
& Ingard 1968, $6.3) or of T M  electromagnetic waves by a conducting surface (e.g. 
Yeh 1988). 

For a given structure, there may be a large number of wave conditions for which 
the eigenfunction approach, based on the Sturm-Liouville theory, is no longer 
applicable. These cases correspond to the situation when two eigenfunctions have the 
same eigenvalue (wavenumber). We show that for this case the boundary-value 
problem is no longer separable and must be treated by a Green’s-function analysis. 
In  acoustics, this phenomenon has been observed by Tester (1973), who examined 
the attenuation of acoustic waves in rectangular ducts, with absorbing sides. He 
showed that this new wave mode varies linearly with propagation distance, but in 
fact is the most rapidly decaying of all the modes in the problem. 

The approach we follow is to present the coupled boundary-value problem and the 
matching conditions between the fluid and porous medium; then the full 
eigenfunction solution is examined. In $ 4, the plane-wave approximations are 
developed for several structure geometries. In $5 ,  the cases where the modal 
wavenumbers coalesce and mode swapping occurs are discussed and the solution for 
these special cases is presented. Finally, results from the full eigenfunction solution 
and the plane-wave approximation are presented and compared. 

2. Theoretical formulation 
We consider the interaction of a gravity wave train with a single homogeneous, 

isotropic, porous structure of width b between two semi-infinite fluid regions of 
constant depth, h, as shown in figure 1. The obliquely incident wave train 
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b 

FIGURE 1. Schematic diagram. 

c 

encountering the breakwater face is partially reflected and partially transmitted. 
The wave motion inside the porous structure decays as it propagates through the 
pores. Then, as it encounters the leeward breakwater face, it is partially reflected 
back into the structure and partially transmitted into the leeward semi-infinite fluid 
region. Inside the breakwater, the transmitted and reflected waves are subsequently 
reflected and transmitted back and forth between the two outside faces. 

For an incompressible fluid and irrotational motion, the wave field outside the 
structure can be specified by velocity potentials : Q1 in the seaward region (denoted 
region 1 )  and Gj3 in the leeward region of thc breakwater (region 3). The linear 
boundary-value problem for water of constant depth h is well known. 

In  the rigid porous medium, region 2, the incompressible fluid motion for the 
discharge velocity (flow per unit area) is also describable by a potential and a 
modified free-surface boundary condition. These equations have been derived by 
Sollitt & Cross (1972) and are provided for completeness in Appendix A. 
Characteristics of the porous medium are its porosity, E ,  the linear friction factor, f, 
and the inertial term, s, which are taken to be constant here. For all computations 
in this paper, E = 0.4 and s = 1.  

The boundary-value problem can be completely solved if the potential Qi(x, y, 
z,  t )  is known in the ith region, where i = 1,2,3.  We suppose that a wave, travelling 
a t  an angle 6' to the x-axis, is incident on the breakwater, which lies along the y-axis. 
Then, we can write 

Qi(x,  y, z ,  t )  = Re [$i(x, z )  e-i(AY-wt)], i = 1,2,3,  (2.1) 

where the parameter h is related to the progressive mode wavenumber k, by the 
angle of incidence, k, sin 6' = A .  (To satisfy the matching conditions a t  each vertical 
interface, the y-variation of the solution in each region must be the same (Snell's 
law)). The potentials $i must satisfy the following boundary-value problems. 

I n  region i: 

I a$i - - - 0  a t  z = - h ,  aZ 

where rl = r, = w2h/g and r2 = d h ( s - i f ) / g .  



628 R.  A .  Dalrymple, M .  A .  Losada and P .  A .  Martin 

Since the solutions in adjacent regions must be continuous a t  each interface, 
continuity of mass flux and pressure at x = 0 (between regions 1 and 2 )  and at x = b 
(between regions 2 and 3 )  is required. 

At x = 0, 

at x = b, 

where the subscript indicates derivative with respect to the variable, x. 

3. Full solution 
In  region 1, the function by separation of variables, is 

#l(x, z )  = I,(z){exp [ -ix(ki-A2)i]+Rexp [ix(ki-h2)i]} 
m + x I , (z)R,exp[ix(k2,-h2)i] ,  (3.1) 

where a family of evanescent modes is included to satisfy the matching conditions at 
the porous structure ; here, and below, we choose the branch of the square root that 
satisfies 

Note that the subscript zero refers to the incident and reflected waves whereas the 
subscripts, n > 0, refer to the evanescent modes. R ( = R,) is the reflection coefficient 
and is a complex quantity. 

The depth dependency of the problem is provided by the I,(z), which are given by 

n-1 

Re{(k2-h2)i} 2 0 and Im{(k2-h2)f} < 0. (3 .2)  

ig cosh k,(h + z )  
w coshk,h 

I ,  = - , n = 0 , 1 , 2  ,..., 

and the k, satisfy the linear dispersion relation 

rl = k, htanh k, h, n = 0 , 1 , 2 , .  . . . 

(3.3) 

(3.4) 
This transcendental equation has real roots +k,, where k, > 0, and an infinite 
number of purely imaginary roots. 

It is well known that the set of eigenfunctions, {cosh k,(h+ z ) ,  n = 0 , 1 , 2 , .  . .}, is a 
complete orthogonal set, with 

lh cosh k,(h + z )  cosh k,(h + z )  dz = S,,P, (3 .5)  

where 
sinh 2k, h + 2k,  h 

4kn 
p ( k n )  = 

In region 2 ,  the velocity potential is given by 
m 

$2 = x f',(z){A,exp[-iiz(K2,-h2)~]+B,exp [i(x-b) (K2,-h2)4]}, (3 .7)  
n-1 

where the depth dependency is now 

ig cosh K ,  (h + z )  
w coshK,h 

P,(z) = - , n = 1 , 2  ,.... 
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A ,  and B, are the complex amplitudes of the waves inside the porous structure and 
K, satisfies the complex dispersion relation 

(3.9) 
W2h(g-if) 

9 
r, = r1(t?--if) = = K, h tanhK, h, n = 1,2, . . . . 

The eigenfunctions, {coshK,(h+z), n = 1,2, . . .} are also an orthogonal set of 
functions with the normalization factor, P(K,) .  However, under certain cir- 
cumstances discussed later in $5, the expansion (3.7) may be incomplete and an 
additional non-separable mode must be introduced. 

Finally, in region 3 the function q53 should be 
m 

q53 = TIo(z) exp [ - i(x - b) (k: - A,)$] + x T, I,( z )  exp [ - i(x - b) (k2, - A,);], (3.10) 

where I, and I ,  are defined as before in (3.3), T ( = To) is the (complex) transmission 
coefficient and Tn,n > 0, are the complex amplitudes of the family of evanescent 
modes present at  the leeward interface. Furthermore, ko and k, also satisfy (3.4) as 
the depth is constant in all regions. 

#, and q53 into (2.3) and (2.4) in order to match the solutions at 
the interfaces, x = 0 and x = b ,  a system of equations in R,  R,, T ,  T,, A,, and B, is 
obtained. To simplify the solution of the large system, some algebraic manipulation 
is done. First, the orthogonality of the P, series over the depth domain ( - h, 0) is 
used, resulting in a new system of equations in A, and B,. Next A, and B, are 
eliminated from this system of equations, giving a system of coupled equations in R ,  
T ( =  To), R,, and Tfl,n > 0: 

f l -1  

Substituting 

(3.11) 
for m = 1,2, . . . , where the following definitions have been adopted : 

E& = exp [ f ib(KL - h2)i], I (3.12) 

J X,,, = l h I n P , d z  = - g ( s - i j -  1) 
( 8 - i f )  (K", - k2,) ' 

It is straightforward to show that (3.11) transforms into equations given by Sollitt 
& Cross (1972, p. 1837) for the normal incidence case (except for a misprint in Em in 
the second equation where the negative sign should be a plus). Once R ,  and T, have 
been evaluated, A, and B, can be calculated from 

1 
A ,  = 

1 
B, = 

In practice, the infinite summations in (3.11) and (3.13) must be truncated to a finite 
number of terms. 
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4. Plane-wave approximations 
In  the plane-wave assumption, only the most progressive mode (least damped) of 

all the modes in each region is used in satisfying the matching condition. For small 
f ,  the only wavenumbers used in the problem are k = k,, and K = K,, obtained from 
(3.4) and (3.9). Clearly this leads to a great simplification of the mathematics; 
however, significant problems can arise if K, is not the most progressive mode (cf. 
$5.2 for large f ) .  

4.1. Rectangular breakwater 

Inside the structure of width b, only a transmitted wave a t  x = 0 and a reflected wave 
a t  x = b have to be considered. Then the velocity potentials in each region simplify 
to 

(4.1) I 
I 

= Io{exp[-ix(k2-h2)f]+Hexp[ix(k2-A2)~]}, 

$2 = P,{A,exp[-ix(K2-h2)~]+B,exp [i(x-b)(K2-An")i]}, 

$3 = I o T e x p [ - i ( x - b ) ( k 2 - h 2 ) i ] .  

Following the same procedure as before, the following solutions are obtained : 

i(l-m2)sin[(K2-A2)tb] 
2 m e o s [ ( ~ ~ - ~ ~ ) ~ b ] + i ( i  +m2)sin[(K2-A2)ib]' 

R =  

2m 
2m cos [ (K2 - h2); b] + i( 1 + mz) sin [ (K2 - A2)i  b] ' 

T =  

where 
M M 

.I -I' .I --n I 
E = exp [-ib(K2-h2)i], m = 

(4.2) 

(4.3) 

R and T are functions of only two parameters: m, the dimensionless admittance of 
the breakwater and b(K2-h2)i, a dimensionless width of the structure. The 
admittance m is defined as the ratio of the normal velocity a t  the breakwater to the 
pressure at  the wall and is a measure of the hydraulic characteristics of the structure 
and the angle of incidence. Note that as m2 approaches unity, then the reflection goes 
to zero (independently of b ) .  

4.2. Long-wave approximation for rectangular breakwater 

For this case, which is the shallow-water limit of the plane-wave approximation, no 
evanescent modes are needed in order to match the solutions between regions as the 
horizontal velocity of linear long waves is uniformly distributed over the vertical. 
The system of equations for this case is exactly the same as for plane waves ; however, 
the values of K and k can now be obtained from the asymptotic approximation to the 
dispersion relations in $3  : 

u2 = gk2h, u2(s-if) = gK2h. (4.4) 
R, T, A ,  and B, are as given by (4.2). To obtain the long-wave solutions of Sollitt & 
Cross (1972) and 0. Madsen (1974), it is necessary to  assume normal wave incidence, 
h = 0, and that the breakwater is short compared to a wavelength, kb 4 1. For 
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oblique incidence, when m2 4 1 we obtain the following approximations for the 
reflection and transmission coefficients : 

where A = b(K2 - A2)i/2m. 

4.3. Semi-inJinite porous breakwater 
For this case, there are neither transmitted waves nor reflected waves inside the 
breakwater a t  x = b ,  where b --f 00 ; that is, T = B, = 0. By fulfilling the matching 
conditions a t  x = 0, a system of two equations with two unknowns, R and A,,  is 
obtained. Solving, we obtain from the plane-wave approximation : 

(s- i f )  (1 + m) ' 
A ,  = 

(4.7) 

The symbols are defined as in (4.3). This solution has a minimum at m = 1. 

4.4. Finite breakwater backed by an impermeable wall 

For this case, the breakwater is limited in width by an impermeable vertical wall a t  
x = b. This case has been analysed by P. Madsen (1983) for long waves a t  normal 
incidence ; it may represent the seaward half of a vertical mound breakwater with an 
impermeable core or a wave absorber in a laboratory wave tank placed next to a wall. 
With the plane-wave approximation, the velocity potentials are 

(4.8) 1 $, = I,,{exp[ -ix(k2-A2)i]+Rexp [ix(k2-A2)a]}, 

$2 = P,{A, exp [ - ix(K2 - A'):] +B,  exp [i(x - b) (K2 -A2);]}, 

$3 = 0. 

The matching conditions between regions 1 and 2 remain the same as before, while 
a t x = b  

Substituting the potentials into the matching conditions and using the orthogonality 
relationships yields 

$ 2 2  = 0. (4.9) 

where 

cos [ (K2 - h2)i b] - im sin [ (K2 - A')+ b] 
cos [(K2 - h2)i b] + im sin [ (K2 - A2)ib] ' 

R =  

which can bc transformed into 

(4.10) 

R =  
I+,(=)' 1+E2 

(4.11) 
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In order to compare this solution with Madsen’s solution for normal incidence, let 
h = 0 and let K and k be obtained from the long-wave forms of the linear dispersion 
relations (4.4). Introducing these values into the expression for m, the following new 
definition is obtained : 

(4.12) 
E m = - -  -- 

s:ifc) - ( s - i f ) f  

which coincides with equation 4 of Madsen. Finally, (4.11) becomes 

1 - m  + (1 + m) e-2ilcb 
1 + m +  (1 - m )  e-2iLb’ 

R =  

which is the result obtained by Madsen (his equation 13). 

(4.13) 

5. Wavenumbers and mode swapping 
Solutions of the dispersion relation within the porous medium, (3.9), as a function 

of r2, which are necessary for both models, are obtained primarily by a 
Newton-Raphson procedure. For large values of the parameter f, it is important that 
good starting values are used. This is particularly true when the wavenumbers of two 
different modes are close together (or when they coincide). 

5.1. Small f 
For very small values off and for s = 1, approximate values for K ,  can be obtained 
using the k ,  obtained in the water region. Define D(K)  as 

(5.1) 

such that D(K,+,) = 0 for a solution. Expanding about thef = 0 solution, k,, which 
is equal to one of the solutions in the water domain from (3.4), for K,+, we obtain 

D(K,+,) = K,+, h sinhK,+, h - r2 coshK,+, h, 

D(Kn+,) =D(kn)+D’(kn)(Kn+,-kn)+~”(kn)(Kn+,-kn)2+... 9 (5.2) 

D(kn) K,+l x k,--  
D’(kn ) ’ 

where the primes denote differentiation with respect to k,. To first order in 
(K,,, - k,), we have 

(5.3) 

where D(k,) = ifr, cash k ,  h, (5.4) 

D’(k,) = h (sinh k ,  h +  k ,  h sech k ,  h). (5.5) 

The first mode, K,,  is real for f = 0, corresponding to a progressive wave in the 
water region (k,,), and (for small f )  it is the most progressive mode in the porous 
medium. The other modes, K,, n = 2,3,  . . . , are purely imaginary for f = 0. From 
(5.3), the influence of the f is to damp the wave motion by adding (only) an imaginary 
part to K ,  and real parts to the K,, n > 1. 

A higher-order approximation for K ,  follows by substituting (5.3) for one of the 
(K,+, - k,) in the last term of (5.2) and solving to obtain 

where D ( k , )  = 2h2 cosh k ,  h. 
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t 

t 

t 

t I 
For the wavenumber corresponding to k,, this more accurate approximation now 

results in a change in the real part of K,, which changes the wavelength of this mode. 
For a dimensionless water depth rl > 1, the wavelength of this mode is lengthened ; 
the opposite is true for rl < 1. 

Both of these approximate solutions, valid for small f ,  also provide a first 
approximation for K ,  in a Newton-Raphson numerical solution procedure for larger 
values off. This does not always result in a successful search for each of the infinite 
number of modes. Often, for large values of f, the starting value in the 
Newton-Raphson procedure is taken as a K ,  value for a slightly smaller value off. 

5.2. Mode swapping 
Unnoticed by previous investigators, the Newton-Raphson procedure, based on 
iterating (5.3), fails when D ( K , )  is equal to zero. At  these K ,  values, the 
eigenfunction expansion in the porous medium also fails, since for this value the 
normalization parameter, W(K,) is equal to zero. An entirely new solution procedure 
is needed for these situations. 

Figures 2 4  illustrate the behaviour of the dispersion relationship with dimen- 
sionless depth and the situations where the eigenfunction solution fails. The plots 
show the complex wavenumber for the first five non-dimensional modes (K,  h, n = 
1-5) for various values off and a given value of TI. To help identify the individual 
roots: K , h  is the upper-most curve in each figure, with the largest real part for 
f = 0;  the K ,  h, n = 2-5 are ranked from smallest to largest imaginary part for 
f =  0. 
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FIGURE 3. First five wavenumbers in the porous medium as the friction factor, f, varies from 0 

to  4, for r, = 1.6010. Solid line corresponds to K , .  

For a shallow-water case, r, = 0.2012, figure 2 shows the dimensionless 
wavenumbers in the porous medium as f varies from 0 to 12. For this case, Re{K,} 
first increases (as predicted by (5.6)), then decreases with f .  Re {K,} exceeds Re {K,} for 
f > 10, which means that the plane-wave approximation is not valid for large values 
off. No mode swapping appears for shallow water. 

In  figure 3, a value of rl much greater than unity is used (1.610) and K, has an 
immediate decrease in magnitude as f increases. For this r,, K, is greater than K, for 
relatively small values off. 

For the value of r, = 1.65061, corresponding to intermediate water depth, the 
curve of K, h versus f osculates with that of K ,  h, as shown in figure 4 at  K, h = 
(1.12536, -2.10620), corresponding to  an f-value of 1.24801. For slightly smaller 
values of r, the dimensionless K, curve passes above the K ,  curve. For a slightly 
greater value, the K, curve passes below the K, curve ; in fact, the trajectory followed 
by each curve is the same as that followed by the other mode at the slightly smaller 
value of r,. This is referred to as mode swapping (e.g. Craik 1985). 

As I'l increases towards deeper water conditions, the dimensionless K, curve may 
intersect other higher K, modes. Figures 5 and 6 show the double roots of K, h with 
K, h and K4 h. In the last curve, it is clear that the value of K, h oscillates around the 
vertical line, Re{Kh) = r,. 

The coalescence of the two modes implies that another new mode must be present, 
as occurs for example when double roots are obtained in the characteristic equation 
while solving an ordinary differential equation with constant coefficients. The new 
mode at the coalescence point is 

(5.7) ( f ix coshK,(h + z )  + (h + z )  sinhK,(h + z ) )  e+ iK,z  
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01 I I I I I I I I I I I ] ’  I I I 

- l o b  1 

0 1 2 3 
k, h 

FIQURE 6. First five wavenumbers in the porous medium as the friction factor, f ,  varies from 0 to 
4, for r, = 2.2785, showing the coalescence of K ,  and K4. Solid line corresponds to K,. 

Mode Kh r1 f 
2 (1.12536, -2.10620) 1.65061 1.24801 
3 (1.55157, -5.35627) 2.05785 2.59239 
4 (1.77554, -8.53668) 2.27847 3.74051 
5 (1.92940, - 11.6992) 2.431 12 4.80798 
6 (2.04685, - 14.8541) 2.54799 5.82647 
7 (2.14189, - 18.0049) 2.64270 6.81048 

TABLE 1. Osculation points in the dispersion relationship 

as shown in Appendix B using a Green’s function approach. This mode coexists with 
the usual mode for this wavenumber, 

cosh K ,  (h + z )  e * iK1z. 
All of the originally (at f = 0) evanescent modes swap identities with K ,  a t  
appropriate values of r, and f, as D’ in (5.5) has an infinite number of roots, some 
of which are given in table 1. There are no triple roots, however, as D” is never zero. 

6. Results and conclusions 
First, for a finite-width breakwater, we examine the reflection coefficient as a 

function of wave period (or depth) and the friction factor and wave direction. In 
figures 7 and 8, the magnitude of the reflection coefficient, IRI, is plotted versus k,h 
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FIGURE 7. Reflection coefficient versus relative water depth for breakwater with f =  1 ,  b / h  = 1, 
8 = 0". Full long-wave model, ----; long-wave theory, (4.2), ---; plane-wave approximation; ----; 
full solution, -. 

c 4 

0.8 L 

0.21 ' 
0 0.s 1 .o 1 .s 

k0 h 
FIQURE 8. Reflection coefficient versus relative water depth for breakwater with f = 1.5, b/h  = 1, 
8 = 0'. Full long-wave model, - - -  -; long-wave theory, (4.2), ---; plane-wave approximation, ; 
full solution, -. 

for the various methods of solution with b / h  = 1 for normal wave incidence. The 
complete solution (with 6 terms in the porous medium expansion) and the plane- 
wave approximation (4.2) are shown along with two long-wave approximations : the 
f i s t  with the wavenumbers chosen by the shallow-water relationships (4.4) and the 
second with the further approximation that (K2-A2)ib -4 1 (0. Madsen 1974). This 
second long-wave model will be called the full long-wave model. 

For figure 7, the friction factor is fixed as unity, f = 1 ,  and for figure 8, f = 1.5. For 
21-2 
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FIQURE 9. Reflection coefficient versus relative water depth for breakwater with f = 1 ,  b /h  = 1 ,  
0 = 30". Full long-wave model, - - -  -; long wave theory, (4.2), ---; plane wave approximation, 

; full solution, -. 

both figures, the full long-wave model diverges from the complete solution with 
increasing depth more rapidly than the other solutions. By comparing the two long- 
wave solutions, half of the error in the full long-wave model follows from the use of 
the incorrect dispersion relationship in intermediate-depth water and the other half 
from the assumption that the breakwater is short with respect to a wavelength. The 
plane-wave approximation diverges from the full solution in deeper water than the 
long-wave models and provides a reasonable estimate of the reflection coefficient for 
this case. For k,h  < 1.5, the relative error between the plane-wave approximation 
and the full solution is less than 5%. As the relative depth increases, the error 
becomes larger. 

In  figure 9, the wave angle of incidence is 30" and f = 1,  which can be compared 
with figure 7, the normal incidence case. The non-zero wave angle results in smaller 
reflection coefficients for all methods (and correspondingly increased transmission 
coefficients). Again the plane-wave approximation works well for k , h  < 1.5. 

As the friction factor increases, the plane-wave approximation begins to break 
down, as K ,  may no longer be the dominant progressive wave. For this reason, the 
plane-wave approximation in most cases should be restricted to small f-values, with 
'small' depending on the value of dimensionless water depth r,. The smaller this 
parameter, the larger f may be for the plane-wave approximation to still provide 
good estimates of R.  For example, for r, > 1.6501 (corresponding to  dimensionless 
depths greater than that necessary for the first coalescence of the wavenumbers in 
the porous medium), values off less than one result in good (less than 10 % error) 
estimates from the plane-wave theory, when compared to the complete solution. 
(Note that K ,  reaches a local minimum and K ,  reaches a maximum for f - 1 in figures 
5 and 6.) However, in shallow water, for the case that r, = 0.2012, f can equal 10 
with less than 2% error between the plane-wave approximation and the complete 
solution. 

Figure 10 shows the magnitude of the reflection coefficient for the case of a 
rectangular breakwater with b / h  = 1 for different (small) friction factors as a 
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FIGURE 10. Reflection coefficient versus 8 for breakwater with blh = 1, w2h/g = 0.2012: 
f = 1 -. f = 3  , ,  _ _ _ _ -  f = 5 ,  ---. 
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FIGURE 11 .  Reflection coefficient versus 8 for breakwater with blh  = 1 ,  d h l g  = 1.6010: 
f = 0.25, -; f = 0.5, - - - - ;  f = 0.75, 
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FIGURE 12. Dimensionless skin depth versus 0 for a semi-infinite breakwater for two dimensionless 
water depths and f-values. For r, = 0.2012: f =  1, -. , f = 2, ....a. For r, = 1.6010 : f = 0.25, 
_ _ _ _  ; f = 0 . 5 ,  . . . . .  

function of angle of incidence, using the plane-wave approximation. If the friction 
factor is high, the reflection coefficient is generally larger than the case for a 
breakwater with a smaller friction factor. Figure 11 shows the same variables but for 
deeper water. 

The minimum in the reflection coefficient, which occurs for large angles is shown 
in this figure, corresponds approximately to  a maximum in the transmission 
coefficient. This minimum occurs at different angles of incidence as f (or m )  changes 
(and, for small b(K2-h2)i is independent of the width of the breakwater). This case 
is similar to the non-dissipative case of waves incident on a submerged obstacle or a 
step change in water depth. For the case of a small submerged obstacle, Miles (1981) 
has shown that the reflection coefficient is zero for 45" incidence regardless of the 
shape of the bottom obstacle. For a step, which is analogous to the case of the 
reflection and transmission of light from two dissimilar media, a zero reflection 
coefficient occurs a t  the Brewster angle, which can be shown to occur at tan Ob = k J k 2  
in the long-water-wave analogy. The explanation for no reflection in optics is that the 
transmitted wave direction is at a 90" angle to the reflected wave angle. Therefore 
there can be no energy transferred into the reflected wave mode. If one of the two 
media is dissipative, such as the case of electromagnetic waves impinging on a 
conductor, which is analogous to our present topic, the minimum in the reflection 
coefficient is known as the principal angle of incidence, Mathieu (1975). 

For an infinitely wide structure, the oscillations induced by the incident waves 
decay with distance into the structure. A measure of this decay is the skin depth, 
which is the distance over which the motion has decayed to e-l. We non- 
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dimensionalize the skin depth 6 with the wavenumber k, and define it for the plane- 
wave approximation as 

It is shown versus incident angle in figure 12 for r, = 0.2012, and 1.6010, each with 
two values off. For all cases the penetration into the structure is reduced for larger 
f-values and with increasing angles of incidence. Furthermore, the skin depth is less 
than the wavelength (27c/k,) for all cases, so that structures wider than a wavelength 
can be considered semi-infinite structures. 
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Appendix A. Equations in the porous medium 
In order to describe the wave field inside a breakwater of porosity e,  it is necessary 

to describe the fluid motion of the incompressible fluid in the pores of the rigid 
structure in terms of the seepage velocity vector, q,  which has components in all 
three coordinate directions, and the pore pressure, p .  These quantities are obtained 
by averaging over a finite volume, containing both the solid phase of the porous 
medium and the pores. 

Following Sollitt & Cross (1972), the conservation-of-mass equation can be 
expressed as 

The equation of motion includes resistance forces described by Forchheimer's model 
and an additional term which evaluates the added resistance caused by the added 
mass of discrete grains within the porous medium (Sollitt & Cross 1972; Hannoura 
& McCorquodale 1978). This equation may be written as 

v .q=o .  

where q = 141 and the fluid has density pw and kinematic viscosity v. Two hydraulic 
properties of the porous medium used in this equation are the intrinsic permeability, 
R, and the turbulent resistance coefficient, C,; s is an inertial coefficient, defined by 

where C, is the added-mass coefficient of the grains. The parameter s is often taken 
as unity in practice, although Le MQhautB (1957) and Sulisz (1985) report better 
correlations with laboratory data with values approaching 2. Here we have taken s 
to be unity. 

Assuming time-periodic motion, with the same angular frequency as the waves, w ,  
this equation may be linearized on the basis of Lorentz's hypothesis of equivalent 
work, replacing the dissipative nonlinear stress term in (A 1) by an equivalent linear 
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term, fwq, where f is a dimensionless friction coefficient. This yields the linearized 
form of the equation, 

iswq = -V -+gz -wfq. tw 1 
Taking the curl of this equation shows that the flow in the porous medium is 
irrotational and can be described by a potential, q = W@. Substituting the potential 
into (A 3) results in a Bernoulli equation within the porous medium: 

P s-+-+gz+fwrp = 0. 
at Pw 

Finally, substituting the potential into the conservation-of-mass equation yields 
Laplace’s equation, which must hold everywhere within the medium. 

At the phreatic surface, the Bernoulli equation can be combined with the linear 
kinematic condition that the water particles in the surface follow the surface, 

to yield 

Solutions to these equations depend on the values of s, E ,  f ,  C, and R,, which are 
related to the type of porous structure considered and are taken as given. However, 
to evaluate the linearized friction coefficient, f ,  an additional condition is required. 
Following others, the Lorentz’s hypothesis of equivalent work has been assumed. In  
doing this, f is evaluated from the following equation: 

where L = 2n/h. The determination off  is therefore iterative, as f is required to 
determine the q. 

Here, however, f is taken as a given constant, which, in principle, could range from 
zero to infinity; for porous breakwaters, it is of 0(1), while for wave absorbers in 
wave tanks it can be higher. 

Appendix B. Green’s function approach 
The eigenfunction expansion can be found through the use of a Green’s function, 

which will be shown for the porous medium, where the presence of a double pole 
affects the solution for discrete values of the parameter, r2 = w2h(s- i f ) /g .  First the 
simple-pole case will be treated. 

The Green’s function for the velocity potential a t  (x , z )  due to a wave source a t  
(6,c) is given by John (1950, p. 99), for z < 5, as 
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where 
phcosh&+f,sinhp[ 
phsinhph-f2 coshph 

p ( p )  = 2coshp(h+z) 

For f > 0, p ( p )  has poles in the second and fourth quadrants; note that p ( p )  = 
-p(  - p ) .  Write (B 1) as the sum of two integrals, using 

(B 3) 

Deform the contour in the first (second) integral into the positive (negative) 
imaginary axis. There is no contribution from the large quarter-circles, in the limit, 
by Jordan's lemma. The two contributions from integrating along the imaginary axis 
cancel. This leaves only the residue contributions to the second integral. Evaluating 
these residues at the simple poles, (p = K m ) ,  where K ,  are the (complex) roots of 

2 cos p(x - 6 )  = etlz-El+ e-tlz-51, 

D(K,) = K m h s i n h K m h - f 2 c o s h K , h = 0 ,  (B 4) 

with Re (K,) > 0 and Im (K,) < 0, yields 

coshK,(h+ z )  coshK,(h + 5) e-iKmlz-EI 
2Km h + sinh 2Km h G ( x ,  z ;  6,C) = 47ci , (B 5 )  

m 

showing that the eigenfunctions are of the form 

coshK,(h+z) efiKmz. (B 6) 

For those cases where double poles exist, that is, when K ,  coalesces with a K ,  and 
both D(K,)  and D'(K,) are zero, the residue of P ( p ) / D ( p )  is (see e.g. Churchill 1960) 

2 P  2 PD'" 
D 3 (D")2' 

where D ( p )  is as before and 

coshp(h+z)e-i'lz-R. 

Thus, we find that a double pole a t  K ,  contributes to the expansion of G a term 

where 

&(z, 5) = [ - ilz- 61 coshK,(h + z )  + (h + z )  sinhK,(h + z ) ]  coshK,(h + 5) 
+ [ - 4h cosh K,(h + 5) tanh K ,  h + (h + 6) sinh K ,  (h + 5)] cosh K,(h + z) .  (B 10) 

This shows that the appropriate eigenfunctions at K ,  are of the form 

{ & ix coshK,(h + z) + (h + z )  sinhK,(h + z ) }  e*iK1z and coshK,(h + z )  e*iK1z. (B 1 1) 
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